Molecular basis for PrimPol recruitment to replication forks by RPA
نویسندگان
چکیده
DNA damage and secondary structures can stall the replication machinery. Cells possess numerous tolerance mechanisms to complete genome duplication in the presence of such impediments. In addition to translesion synthesis (TLS) polymerases, most eukaryotic cells contain a multifunctional replicative enzyme called primase-polymerase (PrimPol) that is capable of directly bypassing DNA damage by TLS, as well as repriming replication downstream of impediments. Here, we report that PrimPol is recruited to reprime through its interaction with RPA. Using biophysical and crystallographic approaches, we identify that PrimPol possesses two RPA-binding motifs and ascertained the key residues required for these interactions. We demonstrate that one of these motifs is critical for PrimPol's recruitment to stalled replication forks in vivo. In addition, biochemical analysis reveals that RPA serves to stimulate the primase activity of PrimPol. Together, these findings provide significant molecular insights into PrimPol's mode of recruitment to stalled forks to facilitate repriming and restart.
منابع مشابه
Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins
PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact wi...
متن کاملHuman Primpol1: a novel guardian of stalled replication forks.
The successful duplication of genomic DNA during S phase is essential for the proper transmission of genetic information to the next generation of cells. Perturbation of normal DNA replication by extrinsic stimuli or intrinsic stress can result in stalled replication forks, ultimately leading to abnormal chromatin structures and activation of the DNA damage response. On formation of stalled rep...
متن کاملRole of replication protein A as sensor in activation of the S-phase checkpoint in Xenopus egg extracts
Uncoupling between DNA polymerases and helicase activities at replication forks, induced by diverse DNA lesions or replication inhibitors, generate long stretches of primed single-stranded DNA that is implicated in activation of the S-phase checkpoint. It is currently unclear whether nucleation of the essential replication factor RPA onto this substrate stimulates the ATR-dependent checkpoint r...
متن کاملStructural Analysis of Replication Protein A Recruitment of the DNA Damage Response Protein SMARCAL1
SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A-like1 (SMARCAL1) is a recently identified DNA damage response protein involved in remodeling stalled replication forks. The eukaryotic single-strand DNA binding protein replication protein A (RPA) recruits SMARCAL1 to stalled forks in vivo and facilitates regression of forks containing leading strand gaps. B...
متن کاملRPA-Mediated Recruitment of the E3 Ligase RFWD3 Is Vital for Interstrand Crosslink Repair and Human Health
Defects in the repair of DNA interstrand crosslinks (ICLs) are associated with the genome instability syndrome Fanconi anemia (FA). Here we report that cells with mutations in RFWD3, an E3 ubiquitin ligase that interacts with and ubiquitylates replication protein A (RPA), show profound defects in ICL repair. An amino acid substitution in the WD40 repeats of RFWD3 (I639K) found in a new FA subty...
متن کامل